
Cover Your APIs: Securing Your Hidden Web Attack Surface

WHITE PAPER

Securing Your
Hidden Web
Attack Surface

Cover Your APIs

</>

Cover Your APIs: Securing Your Hidden Web Attack Surface

 + The importance of web APIs and web services in

software development

 + The challenges of including APIs in application security

testing, and how to overcome them

 + The security and efficiency benefits of holistic AppSec

Highlights from this white paper include:

2

Web application programming interfaces (APIs) present a huge – yet still underprotected –

attack surface for cybercriminals. While application security testing has traditionally been

focused on the user interface, modern applications rely heavily on APIs for data exchange

and to build the application architecture. Today’s enterprise web apps are no longer

monolithic applications but rather constellations of loosely coupled services communicating

through APIs, all subject to rapid development in response to shifting business requirements

– and each a target in its own right. While these innovation pathways are crucial for growth,

they also dramatically increase the web attack surface, leaving organizations exposed to

attacks that target APIs in order to directly access sensitive data and functionality.

As Gartner® estimates, “By 2023, 90% of web-enabled applications will have more surface

area for attack in the form of exposed APIs rather than the user interface, up from 50%

in 2020.” It is therefore quite clear that application security testing must also cover APIs.

However, legacy AppSec approaches haven’t kept pace with technical developments, leaving

organizations struggling to reconcile multiple testing tools and processes – or altogether

overlooking web application APIs in their security programs. With API abuses expected

to become the top threat vector in 2022, continued neglect can only mean yet more

successful cyberattacks.

This white paper shows the importance of including APIs in web application security testing

and outlines a modern approach to vulnerability testing that covers the entire attack surface

of modern web applications, from development to production.

Executive summary

Cover Your APIs: Securing Your Hidden Web Attack Surface 3

What you don’t see can hurt you most

At the risk of revisiting an industry-standard

analogy, APIs are a major part of the hidden

underwater part of the iceberg that is your

web application environment. Just as 80%

of an iceberg lurks under the surface, the

vast majority of modern applications work

with APIs more than their user interface. In

fact, research shows that APIs account for

a massive 83% of all web traffic, in no small

part because they are what powers content

delivery networks and data back-ends.

We are used to thinking that the user

interface and the application are the same

thing, but the visible controls are only the

start of the attack surface available to threat

actors. In the physical world, criminals are

unlikely to march in through the front office

if they can sneak in through the service

entrance. Cybercriminals are no different –

why waste time trying to hack a login form

when they can quietly extract the same data

through an API? More importantly, APIs are

far more likely to slip under the radar during

testing and asset inventory, which makes

them harder to secure and easier to exploit.

As we will see later, a graphical user

interface is increasingly just a way to

retrieve data from APIs and present it

to users. In modern service-oriented

architectures, most – if not all – application

functionality is implemented as web

services and exposed through APIs. In

effect, APIs are the gatekeepers of the

world’s business logic and data – and

with information now the most valuable

resource, it is no wonder that API-based

attacks are on the rise. To quote Gartner®:

“By 2023, 90% of web-enabled applications will have
more surface area for attack in the form of exposed APIs
rather than the user interface, up from 50% in 2020. By
2022, API abuses will move from an infrequent to the
most frequent attack vector, resulting in data breaches
for enterprise web applications.”
Source:
Gartner, Magic Quadrant™ for Application Security Testing 2021, Dale Gardner, Mark Horvath, Dionisio Zumerle,
6 January 2021. GARTNER and MAGIC QUADRANT are a registered trademark and service mark of Gartner, Inc. and/or its
affiliates in the U.S. and internationally and are used herein with permission

If you want to avoid becoming the next breach headline, there is no question that you need to

test and secure your web applications in their entirety, including both UI and API – because

cybercriminals will find the weakest spot and strike there. But while web application security

testing is already a fairly mature segment, API security is still playing catch-up, and there are

many misconceptions and misunderstandings to clear up around testing the API part of the

web attack surface.

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/state-of-the-internet-security-retail-attacks-and-api-traffic-report-2019.pdf
https://www.netsparker.com/clp/appsec-indicator/

Cover Your APIs: Securing Your Hidden Web Attack Surface 4

Why APIs make

API endpoints are easy to define
but hard to find, test, and secure.

Many start life as private APIs
intended for testing or internal use
but later slip into production, often
without inventory, documentation,
logging, or access control.

Web APIs are designed with
automated access in mind, which is
convenient both for valid users and
for attackers.

API creators may only be expecting
well-formed requests from known
systems (or even the same
application), so they are less likely to
check incoming calls with the same
care as for user-facing pages.

attractive targets

Cover Your APIs: Securing Your Hidden Web Attack Surface 5

Demystifying web APIs

Part of the reason for the rising tide of API-based attacks is that many organizations are still

not sure what web APIs they have, what they should do about them, and what questions to

ask when investigating API security. This section explains web APIs and related concepts,

showing how they work, what hides behind the acronyms, and why API security is still widely

misunderstood – and underestimated as a risk vector.

Attacks on APIs vs. attacks via APIs

Anyone researching web API security will soon find that the term is used in two very different

senses. One usage relates to securing access to the API itself, while the other is about

securing the underlying applications and services against attacks that come through that API.

Understanding the difference is crucial for selecting the right tools and methods, so here is a

brief overview:

For the vast majority of web APIs,

getting access that allows you to

make API calls is only possible

with the proper authorization.

This usually requires an access

key combined with some form

of automated authentication to

verify that the requesting system is

permitted to access the API in the

first place. Attacks on APIs focus

on bypassing access controls to

then allow threat actors to make

API calls that target the underlying

applications or services.

Once attackers have obtained API

access by bypassing access controls

or simply finding an unsecured

endpoint, they can start probing the

application in the hope of finding

exploitable vulnerabilities. At this

point, they can use the whole

array of available web application

exploits – with the added bonus that

they are now using an access path

designed specifically for remote and

automatic use.

Figure 1. Attacks on APIs are about getting access to the interface itself. Figure 2. Attacks via APIs are about using API access to attack the
underlying application.

Attacks on APIs Attacks via APIs

Cover Your APIs: Securing Your Hidden Web Attack Surface 6

Web API glossary

 Application programming interface (API):

A connection for exposing software functionality to other systems and
applications. This is a general programming concept, not limited to web
development. An API defines a request format and a return format.

 Web API:

An interface for accessing web-based software. There are many models
and standards for defining and calling web APIs, the most widely used
model being REST. Any sizable web application is likely to have an API
somewhere to allow automated access to selected functionality. For
example, an e-commerce platform may provide sellers with a manual form
for adding single items while also exposing an API endpoint for adding
items in bulk from third-party inventory management applications.

 Web service:

Web-based code that is not a standalone application but only performs
a specific operation. Web services are only accessible through their
interfaces, so whenever you have a web service, you also have an API.
While the opposite is not true (because systems and applications can
also have APIs), you will often see the terms web API and web service
used interchangeably.

 API endpoint:

The URL for calling a specific web API. The endpoint is the address to
which API requests and parameters are sent. What endpoints are exposed,
how they are accessed, and what format the requests should be depends
entirely on the API type and design. Ideally, all endpoints should be listed
and documented in the API specification.

Cover Your APIs: Securing Your Hidden Web Attack Surface 7

Common web API types

 REST:

Short for REpresentational State Transfer, REST is by far the most popular
type of web API. Rather than a strictly-defined format or protocol, REST
is a general style of web application architecture that sets out guidelines
for designing and implementing HTTP communication between web-based
systems and components. Each operation available through a RESTful API
corresponds to a different endpoint (URL). A list of all the endpoints along
with their parameters and data formats makes up the API specification.
JSON is the most widely used data format, but XML and others are
also supported.

 SOAP:

Originally called XML-RPC, SOAP was the first widely-used standard for
web service communication. SOAP uses XML messages to exchange
requests and responses. SOAP was created to be universal, extensible,
and technology-agnostic, which makes it relatively difficult to use and
optimize compared to HTTP-based REST communication, especially
for simple scenarios. However, being a full-featured protocol with its
own service description language (WSDL), it is well suited for more
complex communication.

 GraphQL:

The newcomer in this list, GraphQL introduced the ability to query APIs in
a similar way to databases. A single GraphQL endpoint receives queries,
passes them to a resolver, and returns only the requested data. This allows
clients to get exactly the information they need in a single request instead
of assembling it across multiple calls. When the introspection feature
is enabled, developers can interactively query a GraphQL endpoint to
discover what data it can provide. While still relatively new, GraphQL is
rapidly gaining popularity because of its usefulness for applications that
work with very large data sets, and its adoption can only accelerate in the
coming years.

Cover Your APIs: Securing Your Hidden Web Attack Surface 8

Meet your ever-growing web attack surface

An external API is essential for any web

app that needs to interact or integrate

with other software. In that respect, APIs

are the glue that holds together the entire

modern web. They make it possible to

add communication between all kinds of

systems, fueling innovation and unlocking

new business opportunities. Mashups,

from content aggregators to enterprise

dashboards, are a prime example of apps

that rely on content and functionality from

external sources, retrieved and manipulated

via APIs.

In the enterprise software world, APIs are

crucial for integration and customization.

For example, Invicti products provide

dozens of REST API endpoints that

allow organizations to automatically run

vulnerability scans, fetch results, manage

users, and perform many other operations.

In this case, the API makes it possible to

integrate vulnerability testing into existing

workflows and customize out-of-the-box

integrations where necessary. Crucially

for security and data confidentiality, only

authorized and licensed users can make

such API calls.

One thing is certain: if you have web applications, you already have APIs somewhere in your

web attack surface today. The original use case for adding them was to extend access to

application functionality beyond the graphical user interface, most notably for integrations

and automation. With the move to service-oriented architectures and agile development, it

became clear that APIs and the services behind them were taking center stage as one of the

fundamental building blocks of modern web apps. In terms of security, the web application has

gone from one big target to hundreds of little targets – and that means hundreds of potential

entry points to defend.

In general, APIs require a unique access key

to confirm that requests are authorized. All

requests to non-public APIs also need to

be authenticated, with single sign-on now

being the norm for enterprise applications.

If either authorization or authentication

is weak or missing, threat actors may be

able to send API calls to the underlying

application or service to extract or modify

data. Worse still, if undocumented API

endpoints make it into production, they

are likely to be less secure than official

endpoints, either because they were

never intended to be publicly accessible

or because they slipped under the

testing radar.

In by the service door: APIs for extending access

Cover Your APIs: Securing Your Hidden Web Attack Surface 9

Modern web apps routinely use API

calls to exchange information between

components, especially with the move to

microservices and serverless architecture.

Rather than storing and executing all

application code on a central server,

developers implement operations as

separate web services that communicate

via APIs. Depending on the design choices,

a single web application can be made

up of dozens of services or hundreds of

microservices. This API-driven approach

enables agile development and rapid

innovation, as teams can work in parallel

to build independent components without

waiting on a bigger release.

With so much functionality now deployed as

granular services, web APIs can also serve

as a standalone multi-purpose back-end.

The same API can then deliver data and

perform operations for multiple websites,

business systems, mobile apps, IoT devices,

and more. With back-end services doing the

heavy lifting, it becomes simpler and faster

to create new applications. Again, this

helps to drive innovation by focusing

time-sensitive efforts on building the

right front-end and business logic to

get maximum benefits from existing

back-end services.

For all its benefits, spreading access to

data and functionality across dozens of

standalone services has major security

implications. Instead of having just a single

central application to test and secure,

organizations now also have a nebula of

web services, each a target in its own

right. The convenience of automated

access by design is a double-edged

sword, giving malicious actors much more

freedom to craft and conduct attacks

on a massive scale with less chance of

arousing suspicion. Combined with the

risk of undocumented and inadequately

secured endpoints, this makes APIs a

fast-growing vector for cyberattacks with

their many possible consequences, from

data breaches and denial of service to

ransomware deployments.

APIs in service-based applications: Every app is a hundred apps

Figure 3. Even monolithic legacy applications often have an eternal API for integration
and data exchange that comprises part of their attack surface.

Figure 4. Modern web applications not only have external-facing APIs but are
themselves made up of dozens of microservices, each with its own API – all
contributing to the overall attack surface that you need to test.

Cover Your APIs: Securing Your Hidden Web Attack Surface 10

Building API scanning into your AppSec program

Automated vulnerability scanning is a

crucial part of any mature AppSec program,

especially with sprawling web application

environments that change frequently, often

on a daily basis. To know your true security

posture, you need to cover your entire

web attack surface, which means scanning

your web assets both through UIs and via

APIs – and scanning both in development

and in production. To complicate matters

further, APIs can change and expand much

faster than user-facing interfaces, making

purely manual testing impractical and

strengthening the case for efficient and

accurate scanning.

Research shows that security often takes

a back seat when release deadlines loom,

and this goes doubly for APIs. Whether

they are perceived as less exposed or are

simply harder and more time-consuming to

find and test, API security can slip out of

mind when time is short. This is especially

true when a separate toolchain is needed

for the API part of security testing, further

increasing the risk that time pressures will

cause vulnerabilities to slip into production.

Incorporating APIs into the overall

AppSec testing strategy presents a major

technical and organizational challenge. To

maximize test coverage without stopping

development pipelines to wait for results,

you need sufficiently advanced tooling

and a systematic approach to application

security to make it all work without

having to chain together multiple tools

and processes. Here is how Invicti makes

this possible.

When scanning websites and applications,

vulnerability scanners crawl pages and

follow links to build up a list of URLs for

testing. But you can’t crawl an API – you

simply have to know the URLs of the API

endpoints you want to test. For this, you

need API definition files that are created

during development and maintained

across the entire lifetime of a production

application. You also need to support all

the popular definition formats, know the

type of API, and have accurate security

checks ready to probe the application via

that interface.

Invicti provides vulnerability scanning

support for the most popular API types,

namely REST, SOAP, and GraphQL.

Users can import API definition files in

industry-standard formats, including

Postman, OpenAPI/Swagger, WADL, and

WSDL. In practice, this means that as long

as you have the definition files and keep

them updated, your automated security

testing process can routinely cover both

the UI and APIs during vulnerability

scanning. And if you don’t yet have an

application security testing process that is

integrated into your software development

life cycle (SDLC), building one is crucial to

ensure that security can keep up with the

pace of development.

Get the API definitions so you know what to test

https://www.netsparker.com/blog/web-security/new-industry-study-70-percent-teams-skip-security-steps/
https://www.netsparker.com/blog/web-security/new-industry-study-70-percent-teams-skip-security-steps/
https://www.netsparker.com/why-you-need-dast-in-your-sdlc-white-paper/
https://www.netsparker.com/why-you-need-dast-in-your-sdlc-white-paper/

Cover Your APIs: Securing Your Hidden Web Attack Surface 11

API definitions are prepared and maintained
by development teams, so integrating
vulnerability testing into the development
pipeline makes it far easier to include APIs
in security testing workflows. Invicti designs
its AppSec solutions with SDLC integration
in mind, which makes them a natural fit for
API testing. By adding API definitions as
they are created and updated, developers
can ensure that every vulnerability scan
covers the entire existing attack surface
at every stage where security testing is
integrated, including once an application
is in production.

Invicti’s out-of-the-box integrations with
popular issue trackers, CI/CD systems,
and collaboration tools allow companies
to plug automated security testing – APIs
included – into their existing workflows
for maximum efficiency. Combined with
extremely accurate security checks and
actionable vulnerability reports complete
with remediation guidance, this is a tried
and true way of bringing measurable
security improvements without burdening
development teams with external workflows
or separate toolchains.

Integrate API testing into your development lifecycle

To make sure that you have the same level
of protection all across your application,
you need to use the same security checks
for API-based testing and conventional
testing. While this would be extremely hard
to do with separate tools, Invicti makes
it possible by consistently probing the
entire attack surface using one integrated
solution. By running the same high-quality
tests both on interactive pages and on API
endpoints, you can eliminate weak spots in
your overall security posture.

As ever with automated testing, you
need to strike the right balance between
finding vulnerabilities and minimizing false

positives. This is where Invicti’s track
record is second to none in the industry,
with automatic vulnerability confirmation
taking the guesswork out of dealing with
application security reports for the majority
of exploitable vulnerabilities. With well over
a thousand security checks accumulated,
expanded, and continuously improved
since the earliest days of vulnerability
scanning, combined with cutting-edge
technologies such as IAST, Invicti can help
to bring effective and practical application
security testing into any modern web
development workflow.

Ensure consistent accuracy across the entire application

Authentication is another common
stumbling block for automated security
testing. In a world where very few sensitive
resources are deliberately exposed to
unauthenticated users, authenticated
vulnerability scanning is already an
important requirement when testing
websites and applications. Since all APIs
require some kind of authentication,
support for authenticated scanning is an
absolute necessity to allow the scanner to

access API endpoints for testing. From
basic authentication to single sign-on
with OAuth2, Invicti ensures support for
all popular authentication methods used
by modern web applications and APIs.
Authenticated vulnerability scanning
provides maximum test coverage and
the most realistic picture of your real-life
security posture across all web-facing
assets, including websites, applications,
web services, and APIs.

Enforce authenticated scanning

Cover Your APIs: Securing Your Hidden Web Attack Surface 12

Modern applications require modern AppSec

If you have web applications, you also have web APIs – and you need to secure both to

avoid weak links in your security posture. Not that long ago, manual testing was the only way

to check the API part of your web attack surface, but manual tools and processes cannot hope

to keep up with the pace of modern web development. With enterprise applications being

rapidly built from dozens of services or hundreds of microservices all communicating through

APIs, extending automated vulnerability scanning to cover APIs was the logical next step

for web application security – but that required advanced technical solutions and efficient

workflow integration.

Invicti provides a single platform for comprehensive web application security testing,

covering both the visible and the hidden parts of your web attack surface. As you are using

our industry-leading scanning technology in development and production, you can also

ensure that your web APIs are subjected to the same level of vulnerability testing. All this

is integrated into your existing workflows without clunky add-on toolchains or waiting for

external security testing.

You now have all you need to scan and continuously secure your entire web attack

surface – so get to it before the next attack comes.

Cover Your APIs: Securing Your Hidden Web Attack Surface13

FIND US

twitter.com/invictisecurity

facebook.com/invicti-security

linkedin.com/company/invicti-security

Invicti Security is changing the way web applications are secured. An AppSec
leader for 15 years, Invicti delivers DAST, IAST, and SCA technologies that empower
organizations in every industry to continuously scan and secure all of their web
applications and APIs with a highly integrated, automated approach spanning the
entire software development lifecycle. Invicti is headquartered in Austin, Texas, and
serves more than 3,000 organizations of all sizes all over the world.

http://twitter.com/invictisecurity
http://facebook.com/invicti-security
http://linkedin.com/company/invicti-security
https://www.invicti.com/

